8,333 research outputs found

    The Conference on High Temperature Electronics

    Get PDF
    The status of and directions for high temperature electronics research and development were evaluated. Major objectives were to (1) identify common user needs; (2) put into perspective the directions for future work; and (3) address the problem of bringing to practical fruition the results of these efforts. More than half of the presentations dealt with materials and devices, rather than circuits and systems. Conference session titles and an example of a paper presented in each session are (1) User requirements: High temperature electronics applications in space explorations; (2) Devices: Passive components for high temperature operation; (3) Circuits and systems: Process characteristics and design methods for a 300 degree QUAD or AMP; and (4) Packaging: Presently available energy supply for high temperature environment

    Demographic and socio-economic determinants of contraceptive use in a low income community of Karachi

    Get PDF
    The study objectives were to assess multiple factors associated with the use of contraceptives among married women living in a low income community in Karachi. The study was a cross sectional survey of 608 women between the ages of 15 and 49 years. The mean number of living children per woman was 3.7 (confidence intervals 3.49-3.9). The literacy rate was 53%. The current use of contraceptives was 29%. Among many variables examined and in consistence with studies in other countries, women were 4 to 5 times more likely to use contraceptives if they had 3 or more living children than if they had two or fewer living children (p = .000). These results strongly suggest that the number of surviving children and women\u27s education are key determinants in decision-making about contraceptive use and as such are intervention points to increase contraceptive use. Stronger policies focused on improving child survival, reducing the perceived ideal family size through increased female education will be more likely to reduce fertility

    SAM-2 ground-truth plan: Correlative measurements for the Stratospheric Aerosol Measurement-2 (SAM 2) sensor on the Nimbus G satellite

    Get PDF
    The SAM-2 will fly aboard the Nimbus-G satellite for launch in the fall of 1978 and measure stratospheric vertical profiles of aerosol extinction in high latitude bands. The plan gives details of the location and times for the simultaneous satellite/correlative measurements for the nominal launch time, the rationale and choice of the correlative sensors, their characteristics and expected accuracies, and the conversion of their data to extinction profiles. The SAM-2 expected instrument performance and data inversion results are presented. Various atmospheric models representative of polar stratospheric aerosols are used in the SAM-2 and correlative sensor analyses

    Development of integrated thermionic circuits for high-temperature applications

    Get PDF
    Integrated thermionic circuits (ITC) capable of extended operation in ambient temperatures up to 500 C are studied. A set of practical design and performance equations is demonstrated. Experimental results are discussed in which both devices and simple circuits were successfully operated in 5000 C environments for extended periods. It is suggested that ITC's may become an important technology for high temperature instrumentation and control systems in geothermal and other high temperature environments

    Probing the N=14N = 14 subshell closure: gg factor of the 26^{26}Mg(21+^+_1) state

    Full text link
    The first-excited state gg~factor of 26^{26}Mg has been measured relative to the gg factor of the 24^{24}Mg(21+2^+_1) state using the high-velocity transient-field technique, giving g=+0.86±0.10g=+0.86\pm0.10. This new measurement is in strong disagreement with the currently adopted value, but in agreement with the sdsd-shell model using the USDB interaction. The newly measured gg factor, along with E(21+)E(2^+_1) and B(E2)B(E2) systematics, signal the closure of the νd5/2\nu d_{5/2} subshell at N=14N=14. The possibility that precise gg-factor measurements may indicate the onset of neutron pfpf admixtures in first-excited state even-even magnesium isotopes below 32^{32}Mg is discussed and the importance of precise excited-state gg-factor measurements on sdsd~shell nuclei with NZN\neq Z to test shell-model wavefunctions is noted.Comment: 8 pages, 5 figure

    Optimizing end-labeled free-solution electrophoresis by increasing the hydrodynamic friction of the drag-tag

    Full text link
    We study the electrophoretic separation of polyelectrolytes of varying lengths by means of end-labeled free-solution electrophoresis (ELFSE). A coarse-grained molecular dynamics simulation model, using full electrostatic interactions and a mesoscopic Lattice Boltzmann fluid to account for hydrodynamic interactions, is used to characterize the drag coefficients of different label types: linear and branched polymeric labels, as well as transiently bound micelles. It is specifically shown that the label's drag coefficient is determined by its hydrodynamic size, and that the drag per label monomer is largest for linear labels. However, the addition of side chains to a linear label offers the possibility to increase the hydrodynamic size, and therefore the label efficiency, without having to increase the linear length of the label, thereby simplifying synthesis. The third class of labels investigated, transiently bound micelles, seems very promising for the usage in ELFSE, as they provide a significant higher hydrodynamic drag than the other label types. The results are compared to theoretical predictions, and we investigate how the efficiency of the ELFSE method can be improved by using smartly designed drag-tags.Comment: 32 pages, 11 figures, submitted to Macromolecule

    Silicon materials task of the low cost solar array project. Phase 3: Effect of impurities and processing on silicon solar cells

    Get PDF
    The 13th quarterly report of a study entitled an Investigation of the Effects of Impurities and Processing on Silicon Solar Cells is given. The objective of the program is to define the effects of impurities, various thermochemical processes and any impurity-process interactions on the performance of terrestrial silicon solar cells. The Phase 3 program effort falls in five areas: (1) cell processing studies; (2) completion of the data base and impurity-performance modeling for n-base cells; (3) extension of p-base studies to include contaminants likely to be introduced during silicon production, refining or crystal growth; (4) anisotropy effects; and (5) a preliminary study of the permanence of impurity effects in silicon solar cells. The quarterly activities for this report focus on tasks (1), (3) and (4)

    Development of the correction procedure for High Volume Instrument elongation measurement.

    Get PDF
    Cotton spinning mills need high-quality fibers to maintain their manufacturing efficiency. Machinery throughput is increasing and it could translate into more processes with higher breaking stress. Consequently, more fibers are susceptible to breaking or damage. To face this problem, breeders must develop new varieties whose fibers can better withstand this mechanical stress. The main tool utilized in cotton breeding programs is the High Volume Instrument (HVI), which reports in a short time measurements such as micronaire, length, color, and strength. This instrument can also determine fiber elongation, but there is no current correction method for it. Both elongation and strength factor into the work-to-break of fibers, which plays a direct role in fiber breakage and spinning performance. The objective of this work was to develop cotton elongation standards, devise a correction procedure for HVI lines, evaluate measurement stability, and validate these results with a set of independent samples. Two commercial bales, one with low and one with high HVI elongation, were identified as potential elongation standards. The potential standards were produced and evaluated. After validation, they were used to correct HVI lines against Stelometer (STrength-ELOngation-METER) measurements. An independent set of samples was tested on corrected HVIs to confirm the effectiveness of the elongation corrected measurements. The HVI data were at least as good as the Stelometer data, with increased data acquisition speed and precision. This research can help cotton breeders to improve fiber elongation and strength at the same time, resulting in better fibers for yarn spinning

    Trends in aerosol abundances and distributions

    Get PDF
    The properties of aerosols that reside in the upper atmosphere are described. Special emphasis is given to the influence these aerosols have on ozone observation systems, mainly through radiative effects, and on ambient ozone concentrations, mainly through chemical effects. It has long been appreciated that stratospheric particles can interfere with the remote sensing of ozone distribution. The mechanism and magnitude of this interference are evaluated. Separate sections deal with the optical properties of upper atmospheric aerosols, long-term trends in stratospheric aerosols, perturbations of the stratospheric aerosol layer by volcanic eruptions, and estimates of the impacts that such particles have on remotely measured ozone concentrations. Another section is devoted to a discussion of the polar stratospheric clouds (PSC's). These unique clouds, recently discovered by satellite observation, are now thought to be intimately connected with the Antarctic ozone hole. Accordingly, interest in PSC's has grown considerably in recent years. This chapter describes what we know about the morphology, physical chemistry, and microphysics of PSC's
    corecore